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g/Quiz 1

What is the optimal objective function value of the following problem?

min 2xg + 4x; + 4x, + 4x3 + 4x, + 4x5 + Sxg + 4x; + Sxg + 6x9 + 5x49
X

1 00 4 1.2 O 1 1 1 1 1

st.j0 1 0 1 01 1 0 1 1 1|x=]1

0 071 O 1.0 . 1 T 1 1 1

x € {0,1}"
o inY exp(aad)
What is the optimal objective function of : ?
Ax=b
x € {0,1}"

Which variable(s) is(are) 1 in the optimal solution of L Z log(ci +xi) 5

L
Ax = b
x € {0,1}"

min Z Ci X;

AX =
x € {0,1}"
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; genda

o Algebraic Geometry introduction
o Grobner basis and polynomial equations (triangulation)

o Computing Grobner basis: Buchberger algorithm

o Application in graph theory: coloring

o Algebraic geometry in combinatorial optimization

o Test-set methods
Acknowledgements

o How to obtain test-sets for IP
A considerable part of this

_ 5steps material is based on Scipy’s
Grobner basis tutorials and the
Lecture by Maria Isabel Hartillo
for IMUS-MSRI2016
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https://mattpap.github.io/masters-thesis/html/src/groebner.html
https://mattpap.github.io/masters-thesis/html/src/groebner.html
https://www.imus.us.es/IMUS-MSRI2016/assets/media/docs/lectures/lec_hartillo_1.pdf
https://www.imus.us.es/IMUS-MSRI2016/assets/media/docs/lectures/lec_hartillo_1.pdf
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; What is algebraic geometry?

Algebraic geometry is the study of geometric objects defined by polynomial equations,
using algebraic means. Its roots go back to Descartes’ introduction of coordinates to
describe points in Euclidean space and his idea of describing curves and

surfaces by algebraic equations.

Basic correspondence in algebraic geometry

Algebraic varieties >~ Polynomial rings

Example: Circle
Algebraic variety:V := {(z,y) € R* : 22 + ¢* — 1 = 0}.
Polynomial ring: Q[z, y]/ < 2* + y* — 1 >= polynomials mod z* + y* — 1

Carnegie Mellon University S
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Grobner basis - Example

Consider the system of equations
2 2
S={z?+y* +22 —4,2* +2y* - 5,22 — 1}
We would like to find the solution of this system (variety V(S)

It would be easier if we could perform an upper
triangularization technique:

e Finding polynomial equations such that we can solve
one variable at a time z

For that. we compute the Grobner basis for S

Solving this system can be understood geometrically as
finding the intersection between a sphere a cylinder and a
bilinear curve

. . . [1] https://arxiv.org/abs/1810.01440 )
Carnegle Mellon UIIlVGI'Slty 2] Miller, E., & Sturmfels, B. (1999). Monomial Ideals and Planar Graphs. AAECC.
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Y =
g/Grﬁbner basis ¢

Let’s go to the code

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
02%20-%20Groebner%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb

A

/ hat is algebraic geometry?

Notation
e Let k be a field (set where addition, subtraction, multiplication and division work as
with the rationals and reals)
Let x* =z ---x; ; be a monomial in g, **,Tp_1
Let cxX® where ¢ € k beatermin g, *,Tp_1
Let f = qczn caX® be a polynomial in 72 variables
Let Qx| = Q[xo,:--,z,—1] be the polynomial ring in 77 variables
Let A" = A" (k) be the affine space over k

e A monomial order is a total order > on the sets of monomials X such that
Fx® > x” and ¥ € Z" then x°17 > xF ™
o There exists a smallest element under >
o Useful to determine elimination orders

Carnegie Mellon University
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g/What is algebraic geometry?

For the purpose of this lecture
e Let S be a set of polynomials f € Q[zo, ..., ZTn_1]
e V(S)is the affine variety defined by the polynomials f € S, that is, the set of
common zeros of the equations: V(S) = ((z1,- -+, 2n)|fr (21, -+, 2n) = 0,V fr € S)
e The system § generates an ideal 7 by taking all linear combinations over the

polynomial ring Q|z¢,...,z, 1] IN S
o Jiuh€l—-fit+tfiel Every ideal can be finitely generated
o fel,reR—=rfel IT={3thigilhi €Qx]} =T = (g0, ", 9t 1)

o Property: V(S) = V(I)
e Theideal T reveals the hidden polynomials that are consequence of the generating
polynomials in
o For instance is one hidden polynomial is the constant 1 (i.e. 1 € Z ) then the
system & is inconsistent (since 1 % 0 )
e Strictly speaking, the set of all hidden polynomials is given by the radical ideal /Z,
which is defined by vZ = {g € Q[zo,...,2n-1]|Ir € N: ¢g" € T}
o In practice /7 is infinite, so we represent it with a finite set called the reduced
Grobner basis B

Carnegie Mellon University
Tepper School of BUSINESS  wittiam Larimer Melion, Founder 8 __Q\C P:D
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Grobner basis - Properties

Interesting properties

Properties of the variety V(S) = V(Z) can be inferred from the reduced Grobner basis: B

In fact V(S) = V() = V(VI) = V(B

. (B)
o IfB=(T)(orif 1 € B)then V(T) =10
The size of V(S) = V(Z)can be obtained using staircase diagram (without solving
equations)
4 .\'4..\'4 2 .‘I
e 6 o o
e o o o 105
e o o o
.10
® o0 0606060600 0 ("
Fig. 1. The monomial ideal M = (2* 2*y*, zy". y'°). with its generators (white cir-
cles). standard monomials (black dots). and irreducible components (shaded circles)
Carnegie Mellon UIIiVGI'Sity E] '|\1/I|::: Igr/ /Erxggrt%/r?r?%g%oab%%% Monomial Ideals and Planar Graphs. AAECC.
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V/Grobner basis
/ How to compute them?

Monomial orders
e Lexicographic order X% >, x°
o Forevery a,f8 ¢ Z" a >ifthg leftmost nonzero entry of ais-positive.
a1 > B1,0r ag = By andas > B
Example: 3 >, 2222 >p 2y’ 2 >iep 22
Power of £ dominates
e Graded lex order x® >, x

o Forevery a,ﬂ c Z" a >grgm
a| = Zz 0 O-’z > ’5] Z "B of ap =B and o >, 8

Example (E Z >grlem fl?y z >grlea: 373 >g7‘leac Zz
Total degree dominates, power of xbreaks the tie between first 2 polys

e Graded releverse lex order x«o > grevier X

o Same as graded lex order, but ties are broken in reverse lexicographic order
2

Example: wy2z >grevlea: 332 22 >grevlea: CU >grevlea: z
Total degree dominates, power of zbreaks the tie between first 2 polys

Carnegie Mellon University
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V/Grobner basis P

/ How to compute them?

Leading terms
Given a monomial order > and a set of polynomials f € Q|[zo, ..., z,_ 1] we write

f = cox“+terms with exponent vectors o # 8 such that ¢ #= 0 and x@ ~ x#8
wherever x# appears in a nonzero term of f, then

e Leading term LT(f) = cx*

e Leading monomial LM(f) =x~

e Leading coefficient LC(f) =

S-Polynomials
Given two multivariate polynomials f, g € Qlx] considering the least common multiple of
their leading monomials with respect to an ordering >, L = lem(LM(f), LM(g)) we define
the S polynomial as

’ S(f,9) =

Normal form or generalized division algorithm
A polynomial f € Q[x] is reduced wrt G C Q[x] if no monomial of f is contained in the
ideal (LM(g)|g € G)

Carnegie Mellon University
Tepper SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 11 C PD



V/Grobner basis
/ How to compute them?

Grobner Basis (&
Formal definition  Vgi, g; € G,mod(5(¢g;,9;),G) =0

Buchberger algorithm
Input: A polynomial set S = {fo,---, fn_1} that generates 7
Output: A Grobner basis G = {go," -, gi—1 } that generates 7
G:=S8
M :={{fi, fi}: fi, f; € Gand f; # f;}
WHILE M # 0

{p,q} := apairin M

M := M\ {p,q}
S :=85(p,q)
h := reduced (5, G)
IFh=#0
M = MU {{g,h}Vg € G}
G :=GU{h}
Carnegie Mellon University
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder

[1] Weisstein, Eric W, "Buchberger's Algorithm". MathWorld.
2] https://lwww3.risc.jku.at/people/buchberg/




V/Grobner basis

2

How to compute them?

Reduced Grobner Basis |3

A Grobner basis is reduced if for every g & B
e [T(g)divides no term of any element of B\ {g}
e LC(g) =

Important specializations of Grobner basis:
e If the system of equations is linear it reduces to Gauss’ algorithm
e |f the polynomials are univariate it reduces to Euclid’s division algorithm

B =

[ ] https://www.britannica.com/biography/Carl-Friedrich-Gauss
2] https://www.britannica.com/biography/Euclid-Greek-mathematician

Carnegie Mellon University
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Y =
g/Grﬁbner basis ¢

Let’s go back to the code

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
02%20-%20Groebner%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb

V/Grobner basis p
/ Applications

Applications Example
e Algebraic Geometry Graph coloring
e Coding Theory
e Cryptography GV, B) =
e Invariant Theory K={1,---,k}
e Integer Programming
e Graph Theory Can be posed as an Integer Program (actually as
e Statistics a SAT since objective is irrelevant)
e Symbolic Integration miny 1
e Symbolic Summation .82 ek @iy =L,VieV
e Differential Equations Tuj + @oj < 1,V5 € K, V(u,0) € B
e Systems Theory z;; € {0,1},Vje K,VieV

Or rather as a set of polynomial equations
S={zF=1VieV
Ty — x;" =0,V(u,v) € E}

[1] Buchber

. . . er, Bruno. "Grobner bases and systems theory." Multidimensional systems and signal
Carnegie Mellon University L estne 95 s (5801}, 95551 y v y )
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Y =
g/Grﬁbner basis ¢

Let’s go back to the code

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
02%20-%20Groebner%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb

V/Algebralc Geometry in
/ Combinatorial Optimization

Given an optimization problem  argmin, f(x)

s.t.g(x) =0
x € {0,1}"

Where f(x),g(x) € Q[x] Algebraic Geometry appears naturally

The feasible solutions are the variety of the ideal generated by the constraints and a
polynomial enforcing the variables being binary a:f — x;

We can generate a new ideal involving the objective function
7= <Z o f(X),g(X), w? _ ZE7,> C Q[za Loy "y xn—l]

Proposed by Bertsimas, Perakis, and Tayur (2000). BPT method from now on

Example argminxml + 2x9 + 3rs + 4,

s.t.x1 + o+ 223+ 14 =3
x € {0,1}"

1] Bertsimas, Dimitris, Georgia Perakis, and Sridhar Tayur. "A new algebraic geometry algorithm

Carnegie Mellon University ¥or integer programming.” Management Science 46.7 (2)600 999-1008.
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Y =
g/Grﬁbner basis ¢

Let’s go back to the code

BPT method

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
02%20-%20Groebner%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb

,yAIgebraic Geometry In
s/ Combinatorial Optimization

Given an integer linear program

argmin,c' x

s.t.Ax=Db

x € 2"
Where c € Z ,A € Z""",b € Z",

a1+ FainTn bi

L2 H?=1 (z?m) = [[i2; 2
With this we define the mapping ¢ . Qwy, -+, wy] = Q
h that i T
sueh the $(wy) = [ (57)
then for g € Q[w]

¢(g(w17 " 7wn)) — g(¢(w1), " ¢(wn))

Proposed by Conti and Traverso (1991). CT method

We introduce for each constraint a variable z

[217"'7Zm]

Conti, Pasqualina, and Carlo Traverso. "Buchberger algorithm and integer programmin

. . o 1 M
Carnegle Mellon UIIIVCI'Slty {nlernatlonal %ym osium on Applied Algebra, Algebraic A?gorithms, and Error-Correcting 8odes.
Springer, Berlin, Heidelberg, 1991.
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V/Algebralc Geometry in
/ Combinatorial Optimization

=eamPle Axq +5x9 + 23 —37
211 +3x9 +x4 =20

Then gb('wl) — z‘llz% ¢('w2) — 21Z2 ¢(w3) — <1 ¢(’LU4) — 22

Where a set of feasible solutions satisfies

B(wy' wy' wy'wi') = 22y

Let fj — ¢(wj) — HT”’ »%i  we consider the ideal

1=1 3

L=/ —wi, -, fn—wn) CQlz,w]

[ lContl Pasqualina, and Carlo Traverso. "Buchberger aI?orlthm and integer programming.
nternational Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting odes.

Springer, Berlin, Heidelberg, 1991. 20 C PD

Carnegie Mellon University
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V/Algebralc Geometry in
/ Combinatorial Optimization

This method is also able to handle negative coefficients in the constraints

Example 2331 — I _I_ 3 — 4
— X1 +2x9 =3
Then plwn) = 2 plwr) =2 P(ws) = 21

22

Where a set of feasible solutions satisfies
1, 22, T3\ __ 4.5
</5(w1 Wy Wy ) = 2149

Let the ideal be Z = (wy 2y — 2%, W21 — 22, W3 — 21)
We can strengthen it with an extra equation to uses an extra variable t to allow for
invertibility (not always necessary) . .

= (w129 — 27, w221 — 25, w3 — 21,1 — tz122)

[ lContl Pasqualina, and Carlo Traverso. "Buchberger aI?orlthm and integer programming.
n

Carnegie Mellon University ernational Symposium on Applled Algebra, Algebraic Algorithms, and Error-Correcting odes.

. Springer, Berlin, Heidelberg,
Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 21 C PD




Y =
g/Grﬁbner basis ¢

Let’s go back to the code

CT method

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
02%20-%20Groebner%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%202%20-%20Groebner%20basis.ipynb

V/Algebralc Geometry in
/ Combinatorial Optimization

Given an integer linear program argmin, ¢ x
s.t.Ax =D
x 7"

Where c € Z" ,A € Z™ ", b € Z,

We introduce for each constraint a variable 23" it — zf

b;
| ) szl (z?m) = [[i2; 2

With this we define the mapping é: Q) 1

h th w17°"7wn]_>Q[z17'”’z'm7zl_ ) zml]
ai.w.
such that ¢(wj) _ H;il(zz' J y)

Each column can be written as a; = a] —a; with aj,a; >0

J
Then the Ideal becomes T — <zaj_ Wi — Za;“ 1— 212 >

Proposed by Conti and Traverso (1991).

C . . . [ lContl Pasqualina, and Carlo Traverso. "Buchberger aI?orlthm and integer programming.
arnegie Mellon UHIVCI'Slty nternational Symposium on Appl1|ed Algebra, Algebraic Algorithms, and Error-Correcting odes.

. Springer, Berlin, Heidelberg,
Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 23 C PD
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V}/Improvements for p

/ Combinatorial Optimization

Independence from the right hand side

Considering 7 = (z% w; — 81—z - Zym) = (x" —xV : Au= Av,u,v e Z})
With a given Grobner basis W|th respect to a monomial order that ellmlnates Z, t we

have that B N Q[w] is a Grébner basis of the ideal Z N Q[w| = Ty

Given g(w) € TN Q[w] = g(w) € ker(¢) = Ia

This is called the toric ideal of A and is independent from the right hand side.

Objective function
A monomial order >c can be defined wrt the objective € € Ri such that

a>.B=cla>c'Bor
c'a=c'Banda > B

Theorem

Let B~ _be the reduced Grobner basis with respect to > of the ideal 7, , then for any
right hand side, integer constraint matrix, term order, and nonoptimal feasible solution ZO
there is some such that is a better feasible solution Z1 — Zp — u + v

Carnegie Mellon University
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V}/Improvements for p

/ Combinatorial Optimization

Improvements on the Buchberger algorithm

Although extremely general, the main complication is that the Buchberger algorithm has a
double exponential time complexity d2nwith d the degree of the polynomial and 70 the
number of polynomials.

The current best algorithms are developed by Charles Faugere (F4 and F5) and are
based on a transformation into linear algebraic problems, where more efficient algorithms
can be applied.

Project-and-lift algorithms

For computing Grobner basis of Toric ;Z’;’:::"”"" '"'“’] o » Hj”ﬁ'ég” "["s:
ideals the most efficient algorithms try  projnx 1 I

to avoid the the zero reduction of the 5 4 H1§2=UCZC[XI'XZ]
S-polynomial. The most efficient ; .
implementation of this algorithm is p,-o,-(:rz,xffc Rlx, %] RI = U € [y 2]
available in the software 4ti2. FLeRE] e ? R" = JC" © [y Kot Xl

Carnegie Mellon University
Tepper SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 25 C PD


https://4ti2.github.io/

g/Computing Grobner basis

Coloring example

ORNWRUONODWOO

SymPy Maxima Axiom Mathematica

(1) 3-coloring of Graph G(V,E), (3) Average timing for computing Grobner basis of graph
G(V, E) in different software packages

[1] https://mattpap.github.io/masters-thesis/html/src/Grébner.html#

Carnegie Mellon University
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder 26 C PD
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Computing Grobner basis

2

General Benchmarks

Benchmarks of M4GB, Magma, FGBLib & OpenF4 over random dense quadratic polynomial systems over GF(31) with

#equations = 2 * #variables: GrObner baS|S Computatlon
Total CPU time (sce Memory usage (MB 'PU Time * Memory . . . .
’ ‘ - UM | with specific field size 31

10" | e ()]n'lll"l_;_ 0% ~® 0'""";1?:? 10" . .
] iR "> _kob Bk (GF31) comparing various
0°l —a- M4AGB ' ‘ 10°| 4. M4AGB / 10° . . . .

Y- | / - efficient implementations of

A {2 A algorithms F4 and F5.

. = A 7! = i
10% A 10°% | s gl 7
24

v - Al e | Software compared:

102} ; ' 102 |

No. of variables E ~ No. of variables : i\.n, of variables
10° . [ J O pen F4

20 22 24 26 20 22 24 26 20 22 24 26
Benchmarks of M4GB, Magma, FGBLib & OpenF4 over random dense quadratic polynomial systems over GF(31) with ® FGb
#equations = #variables + 1 ° Magma

o

Total CPU time (sec) Memory usage (MB) CPU Time * Memory
; | M4GB
10° & Openk4 T 10° &— Openkd .o o f & OpenFd —
FGb o5 FGb 25 | 10 FGb S\F 2
100 | - Magma ;’:: ; ;’ Magma w1 E | - Magma ’;::
— M4AGB Vs 104 a- M4AGB o {107 o MAGB '/
: . : o0 : 5 | &S
10° o A %1 g ] Sig
= 4P g 10* ~1 1 . A {10 L
102 -1:/ ! | '
10! 4 A 102F & T [ 10* ¢
& > ! o e ' | [ 3
ol . 1 ' =y T ¥ '
10 No. of \'.nriul:le 10 No. of variables | 10 No. of variables
10 11 12 13 14 15 10 11 12 13 1M 15 10 11 12 13 14 15

1tl Rusydi Makarim, Marc Stevens, M4GB: An efficient Grébner&basis algorithm, ISSAC 2017

Carnegie Mellon UIIiVGI‘Sity ps://marc-stevens.nl/research/papers/ISSAC17-MS-M4GB.pdf
21 CAPD
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g/Solving more general problems

How to deal with complicating constraints?

. . . . w oa
Original problem™ ~aene: Linear relaxation =
| - 8x1+ 2x: =17 30 ) 8x1+ 2xz =17
3 — \
. _]_ 5 / \\\ x2=0 \ \ — X220
argmin, ¢ X ' \ \ — xz0 . T 2371 . \ N |
20 \ \ \ \ —_— a-1P=2-x, argmln c x \ | \ \ \ Xl? 0
i X \ ‘ X s e 2 X 20 \ - Y \ @ optimal solution LP
S. t A.X — b v \ \ k \ \ a2} =it ¥ 1 \ \ \ \ e integer points
: \ \ \ \ . 99tlma| solution LP - % 15 \ \ \ \ \ @ optimal solution ILP
i \ \ @ integer points S x f— \ \ v\ \ \
< 0 as T\ \ \ ‘| e optimal solution ILP 10 &8 . W \ \
g x \ \ \ | @ optimalsolution convex INLP n \ \ \ 4 \ \
y \ @ optimal solutio x INLP Z \ \ \ A \ \
n o0 \ X E 02 \\ \‘ ‘\\ X
x € Z a5 00 g,
05 )
) 0 1 2 3

Solve linear relaxation and walk-back from that solution to check if it works folr original
problem.

How to walk-back?

You need to make sure that you stay feasible for relaxation, such that you can eventually
reach optimal solution of original problem.

Grobner basis!

Proposed by Tayur, Thomas, and Natraj (1995)

ur, Sridhar R., Rekha R. Thomas, and N. R. Natraj. "An algebraic geometry algorithm for

. o o T:
Carnegle Mellon UHIVCI'Slty 1]39?/ulg1 9 o 8resence of setups and correlated demands." Mathematlcgl Programming 69.1-3
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g/Solving more general problems

How to deal with complicating constraints?

Proposed by Tayur, Thomas, and Natraj (1995)

In original paper the complicating constraints were stochastic and nonlinear constraints,
but procedure works in general.

Test-set

Given an integer linear program min,c' xs.t. Ax = b,x € Z" there exists a finite set
denotes test-set 7 = {t',---,tV} that only depends on A, C that assures that a
feasible solution xX* is optimal if and only if ¢' (x* + t*) > ¢' (x*) whenever (x* + t?)
is feasible.

Clever discovery
The Grobner basis of the toric ideal ZAwith respect to the weighted order for C
B are test-sets.

Carnegie Mellon University %L]h'g?/ur, Sridhar R., Rekha R. Thomas, and N. R. Natraj. "An algebraicgleometry algorithm for

uling in 8resence of setups and correlated demands." Mathematical Programming 69.1-3
1995): 369-401.

TepperSChOO| Of BUSIﬂeSS William Larimer Mellon, Founder 29 C PD




V/Solutlon methods for
/ Combinatorial Optimization
Current status and perspectives

Classical methods Not very popular classical methods
Methods based on divide-and-conquer Methods based on test-sets
Branch-and-Bound algorithms e Algorithms based on “augmentation”
e Harness advances in polyhedral e Use tools from algebraic geometry
theory e Global convergence guarantees
e With global optimality guarantees e \ery few implementations out there
e \Very efficient codes available e Polynomial oracle complexity once
e Exponential complexity we have test-set
optimal solution —__
augmenting step
Cal'negie Mellon Univel‘sity L R’I[gzasb/r/gg ,\f\vﬁlﬁip;ecjé%%'{%/é%ggsrﬁﬂ Ctﬂeat?%gl;tof discrete optimization.

e Loera, Hemmecke, Képpe. 2012
Te p pe r SChOOl Of BUS INESS William Larimer Mellon, Founder 30 C PD
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; Test-set methods - Example

Primal method for Integer Programs Example

We require: S [1 1 3 1]X B [10 Objective
e An initial feasible solution T A 2 317 HS :
e An oracle to compare objective /

function

e The test-set (set of directions)

e Given the objective, the test set will
point us a direction where to
improve it, and if no improvement,
we have the optimal solution.

e The Grdbner basis test-set only
depends on the constraints and
objective and can be computed for
equality constraints with integer
variables

Carnegie Mellon University [1] Grébner Bases and Integer Programming, G. Ziegler. 1997
[2] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giagdhmo C PD

Tepper SChOOl Of BUS'HeSS William Il_,arimerMellon, Founder
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Z/ Test-set methods

/

Combinatorial problems are usually NP Example
Unless P=NP, they don’t accept 1 1 1 1 10
AX = [ ]x = [
0 12 2 3 15

polynomial algorithms.

0
( ; ) «~— the optimal solution)
2

Where is the NP? Nl
6 \
- \ ~83

(
Obtaining the test-set! ( ))
0

[1] Grébner Bases and Integer Programming, G. Ziegler. 1997

Carnegie Mellon University
Tepper School of Business

William Larimer Mellon, Founder
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; Walk-back procedure

How to deal with complicating constraints?
Starting from the optimal solution of the linear relaxation and a feasible solution of the

original problem, compute Grobner basis and walk back from solution of relaxation using

complicating constraints as oracles Reduced IP solution : INFEASIBLE

minimize 5z, + 3z, + 12y, + 16y, Y, =33, = 1,Cost = 41

such that:
Yutyn=3
Y —3z;<0

depth 1
Yi2 = 321,<0

4y, +2z,;, <10

//:|4Y12+212<10
w2 @ & © © ® ®

Prob{D,3y1; + 21, <10, D13y, +2,, <10} > 0.6

Yy = 2,2, =1 O Infeasible for (P1)
ZijE{O) 1}’ yije{oa 19 27 3} '!/,2=l,5,2=1

Cost = 48,7 = 0.83

D yipai — Y1102 Feasible, OPTIMAL

B> @) y3 by ~ zyy y3 8185, ‘ Pruned due to feasibility
¢ () zpa};, — by, for (P1)

€ Zu)’u“%zbn _211)’11‘1%11712’
(6 Z]l)’lla%lalz—)’ubu-

0 Pruned due to violation
of nonnegativity constraints

[1]hTaJ/u.r, Sridhar R., Rekha R. Thomas, and N. R. Natraj. "An algebraic gleometry algorithm for
(sc eduling in 85esence of setups and correlated demands." Mathematical Programming 69.1-3

Carnegie Mellon University cheduling in

Te p p er SC h OOl Of B us | ness William Larimer Mellon, Founder
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Walk-back procedure

2

Application from machine scheduling
Similar formulation as previously but with some strengthening constraints and walking
improvements. Grobner basis calculation done in < 1s with 4ti2.

Table 2 4 machines, 7 jobs, M = 2. improved model. 250 records, Time in seconds

Walk-back WB new ordering

Total Optimum Total Optimum Gurobi Mosek Cbe
Y Time Nodes Time Nodes Time Nodes Time Nodes Total Optimum Total Optimum Total Optimum
0.696 0.3 125 0.1 121 0.2 63 0.1 44 0.7 0.1 0.8 0.7 10.3 7.5
0.710 0.3 125 0.1 121 0.2 63 0.1 44 0.9 0.1 0.9 0.9 16.0 8.6
0.750 0.4 190 0.2 179 0.3 99 0.1 61 1.6 1.0 217 2.6 9.5 8.0
0.770 0.5 226 0.3 215 0.3 99 0.1 61 1.1 1.0 1.6 1.5 13.6 7.0
0.850 1.1 396 0.4 311 1.1 278 03 130 1.7 6.0 Max 117.2 41.9 233
0.888 34 934 1.3 873 2.8 643 0.2 100 5.1 4.0 Max 3374 31.7 31.3
0.900 34 934 1.3 873 2.7 643 0.2 100 17.4 17.0 Max 265.6 18.1 17.0
0.932 54 1299 1.4 893 4.1 913 0.1 63 12.9 2.0 48.1 3.7 17.8 12.3
0.956 176.9 15,220 130.2 14.670 64.8 8511 2.1 1145 12.7 1.0 Max 21 48.8 41.5
0.960 534.9 28,575 429.3 27,799 263.7 19,072 62.5 7973 41.3 34.0 Max 204.0 2414 2294
0.980 Max NNP 6355.7 98,294 11.7 3360 39.6 16.0 Max NNP 75.7 38.8

MINLP solvers failed. Chance constraint can be reformulated and solved with ILP solvers.
For verification of optimal solution is still competitive.

[1] Gago-Vargas, Jesus, et al. "An imé)roved test set approach to nonlinear int.egeréwoblems with
gggllgggons 0 engineering design." Computational Optimization and Applications 62.2 (2015):

Carnegie Mellon University

Tepper School of Business

William Larimer Mellon, Founder




g/Example: Process reliability

How many backup units should you install in order to ensure reliability of your

problem?
You want to minimize your operation f’@“\ "‘“\ ’_
cost while making sure you satisfy - .

o - Heak ~
a reliability threshold R,
ming ) ; ; CijTij O : R & e oz [

- —/ 2ky | Tnkn

Zj a:ij Z 1
Zij e 7

[Tie, (1 - Hfil(l — ;)% ) = R(z) > Ry

This is a convex integer nonlinear program

. . . 1] Gago-Vargas, Jesus, et al. "An improved test set approach to nonlinear integer problems with
Carnegle Mellon UIIIVCI‘Slty [gg]gligggons 0 engineering design." é) o n

Tepper SChOOl Of BUS'DESS William Larimer Mellon, Founder 35 C PD
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; xample: Process reliability

[
Linear relaxation to find Grobner basis S 6 Sl I
[e) —— Baron
min, » ;4 Z?’;l CijTij % 400
a:z-j—ktij:uij,VieI _g \é’
Q- _—
Z?i:lxij—dij:].,V’iEI,VjEJ _8 = 200
C
k; =
> et Zj:l cijij = b= co o
z;; €Z,Ni€ ILYjeJ O g
£
. =
For this simple problem you can even Runs
compute analytical Grobner basis S g M
>
B., = {zidi — tixd , xigtsp — Tiptigbe » } g 10
TEv O
The authors also proposed a way to inform *§ £ 5
the walk-back procedure of the objective 2
function. 0 I
je) 0
o
E Runs
Carnegie Mellon University gg]gﬁ’}gggga‘n’?%aéhéﬁ%éﬁ 56 destan T o putatonal Cbtmzstion and Appicatioe 65 2 (30 T5y

Te p p er SC h OOl Of B us | ness William Larimer Mellon, Founder
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Complexity introduction

When analyzing an algorithm we are interested in the amount of time and memory
that it will take to solve it.

Carnegie Mellon University

To be safe this is usually answered in the worst case scenario
The discussion here will be mainly the time complexity of algorithms.
We will use the “big-O” notation where given two functions f: 5 — R

g: S5 — R,  where S is an unbounded subset of R we write that if there
exists a positive real number Mand o € S such that f(z) < Mg(z) for
every £ > X then f(z) = O(y(z))
For us S is going to be the set of instances or problems, and an algorithm is
a procedure that will give a correct answer is a finite amount of time.
An algorithm solves a problem in polynomial time if the function that
measures its arithmetic operations f: S — Ry is polynomially bounded by
the function encoding the size of the problem g : § — R

1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols,
Llrld hcomo Zambel 9 9 by ) 37 C PD
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; Complexity introduction

e If there exists an algorithm that solves a problem in polynomial time, the that
problem becomes to the complexity class P
o For example LP belongs to P because the interior point algorithm solves
it in poly-time

e A decision problem is one with answer “yes” or “no”
e The complexity class NP, non-deterministic polynomial, is the class of all
decision problems where the “yes”-answer can be verified in poly-time.

e If all the decision problems in NP can be reduced in poly-time to a problem Q,
then Q is said to be NP-complete
o “Is a (mixed-)integer linear set empty?” belongs to NP and is actually
NP-complete

Carnegie Mellon University

Giacomo Zambe

Tepper School of BUSINess  BCwhikiramirasamiesusiapporenProving Procedures (1971)

[1] Adapted from Inteﬁer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols,
| 38 CAPD
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; Complexity introduction

e A problem Q can be called NP-hard if all problems in NP can be reduced to Q
in poly-time
o Integer Programming is NP-hard
m Since we can transform any NP problem into an integer program in
poly-time, if there existed an algorithm to solve IP in poly-time, then
we could solve any NP problem in poly-time: P=NP

e Integer programs with quadratic constraints are proved to be undecidable
o Even after a long time without finding a solution, we cannot conclude
none exists...
o MINLP are tough!

. . . 1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols,
Carnegie Mellon University L G como Zambet | odramming by )
[2] Cook, Stephen A, The Complexity of Theorem-Proving Procedures (1971) 39 C PD

Tepper School of BUSINESS  wittiam Larimer Melion, Founder
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; Complexity introduction

e A problem is said to belong to the complexity class BPP, bounded-error
probabilistic polynomial time, if there is an algorithm that solves it such that
o ltis allowed to flip coins and make random decisions
o Itis guaranteed to run in polynomial time
o On any given run of the algorithm, it has a probability of at most 1/3 of
giving the wrong answer, whether the answer is YES or NO.

e There exists another complexity class 4 PSPACE problems )
called BQP, bounded-error quantum e ™
polynomial time, which is the quantum NP probems

analogue of BPP

o We hope that some problems B

o BQP I~
belong to BQP and not to BPP to (. y

observe Quantum Advantage
m E.g. Integer factorization

The suspected relationship of BQP to other
problem spaces
1] Michael Nielsen and Isaac Chuang (2000). Quantum Computation and Quantum
A 40 CHPD

Carnegie Mellon University

ormation. Cambridge: Cambridge University Press. ISBN 0-521-63503-9.
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; Take home message

Integer Programs lie at a very special intersection since they are:

e Interesting from an academic point of view
e Useful from a practical point of view
e Challenging from a computational point of view

We do not expect to observe Quantum Advantage by solving Integer Programs
using Quantum Computers (but who knows right? Maybe P=BPP=BQP=NP)

We are still dealing with complicated problems that require answers, so we are
going to try our best to solve them.

Welcome to Quantum Integer Programming!

Carnegie Mellon University
Tepper SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 41 C PD
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g/More thoughts '

Slide taken from Ed Rothberg (key developer of CPLEX and the RO in guRObi)
on a talk of parallelization for (M)IP

Quantum Computing

* Interesting future technology
» Potential to substantially speed up optimization tasks

« Currently still a science project




